SWITCHGEAR AND PROTECTION

Subject Code : EE603PC

Regulations : R16 - JNTUH

Class : III Year B.Tech EEE II Semester

Department of Electrical and Electronics and Engineering BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam - 501 510, Hyderabad

SWITCHGEAR GEAR PROTECTION (EE603PC)

I. OBJECTIVE AND RELEVANCE:

The main objective of this subject is to understand and to know the following concepts:

- → To understand the types of Circuit breakers and relays for protection of Generators, Transformers and feeder bus bar from Over voltages.
- **♣** To describe the important of neutral grounding for overall protection.
- **♣** To analyses the phenomenon of over Voltage and its classification.

II. PREREQUISITES:

The knowledge of following subjects is essential to understand this subject:

- Power Systems I.
- Power Systems II.

III. COURSE OUTCOME:

S.No	Description	Bloom's Taxonomy Level
1	Understand the types of Circuit breakers and choice of Relays for appropriate protection of power system equipment.	Knowledge, Understand (Level 1, Level 2)
2	Understand various types of Protective devices in Electrical Power Systems.	Knowledge, Understand, (Level 1, Level 2)
3	Interpret the existing transmission voltage levels and various means to protect the system against over voltages.	Knowledge, Understanding, Applying, Analyzing (Level 1, Level 2, Level 3, Level 4)
4	Understand the importance of Neutral Grounding, Effects of Ungrounded Neutral grounding on system performance, Methods and Practices.	Knowledge, Understanding, Applying, Analyzing (Level 1, Level 2, Level 3, Level 4)

IV. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (PO)	Level	Proficiency assessed by
	Engineering Knowledge: Apply the knowledge		
PO1	of mathematics, science, engineering	3	Assignments
	fundamentals, and an engineering specialization		

	to the solution of complex engineering		
	problems.		
PO2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Assignments
PO3	Design/Development Analysis: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignments
PO4	Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Assignments
PO5	Modern Toll Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	-	
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	2	Assignments
PO7	Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2	
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	
PO9	Individual and Team Work: Function effectively as an individual, and as a member or	-	

	leader in diverse teams, and in multidisciplinary		
	settings.		
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	-	
PO11	Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	-	
PO12	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	2	Research

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None

V. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSO)	Level	Proficiency assessed by
PSO1	Talented to analyze, design, and implement electrical & electronics systems and deal with the rapid pace of industrial innovations and developments.	3	Lectures, Assignments
PSO2	Skillful to use application and control techniques for research and advanced studies in Electrical & Electronics Engineering domain.	3	Lectures, Assignments

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) -: None

VI. SYLLABUS:

JNTUH SYLLABUS

UNITI—Introduction to Circuit Breakers:

Circuit Breakers: Elementary principles of arc interruption, Recovery, Restriking Voltage and Recovery voltages. - Restriking Phenomenon, Average and Maximum RRRV, Numerical Problems - Current Chopping and Resistance Switching - CB ratings and Specifications: Types and Numerical Problems. – Autoreclosures.

Description and Operation of following types of circuit breakers: Minimum Oil Circuit

breakers, Air Blast Circuit Breakers, Vacuum, and SF6 circuit breakers

UNITII – **Electromagnetic and Static Relays:**

Principle of Operation and Construction of Attracted armature, Balanced Beam, induction Disc and Induction Cup relays. Types of Over Current Relays: Instantaneous, DMT and IDMT types. Application of relays: Over current/ under voltage relays, Direction relays, Differential, Relays and Percentage Differential Relays. Universal torque equation, Distance relays: Impedance, Reactance, and Mho and Off-Set, Mho relays, Characteristics of Distance Relays and Comparison. Static Relays: Static Relays verses Electromagnetic Relays.

UNITIII – **Protection of Power Equipment:**

Protection of generators against Stator faults, Rotor faults, and Abnormal Conditions. Restricted Earth fault and Inter-turn fault Protection. Numerical Problems on % Winding Unprotected.

Protection of transformers: Percentage Differential Protection, Numerical Problem on Design of CT s Ratio, Buchholtz relay Protection.

Protection of Lines: Over Current, Carrier Current and Three-zone distance relay protection using Impedance relays. Translay Relay.

Protection of Bus bars – Differential protection.

UNIT IV – Neutral Grounding:

Grounded and Ungrounded Neutral Systems. - Effects of UngroundedNeutral on system performance. Methods of Neutral Grounding: Solid, Resistance, Reactance- Arcing Grounds and Grounding Practices.

UNIT V –**Protection Against Overvoltages:**

Generation of Over Voltages in Power Systems.- Protection against Lightning Over Voltages - Valve type and Zinc-Oxide Lighting Arresters - Insulation Coordination -BIL, Impulse Ratio, Standard Impulse Test Wave, Volt-Time Characteristics.

GATE SYLLABUS:

Power generation concepts, ac and dc transmission concepts, Models and performanceof transmission lines and cables, Series and shunt compensation, Electric field distributionand

insulators, Distribution systems, **Per-unit quantities,Bus admittance matrix, Gauss-Seidel and Newton-Raphson load flow methods,** Voltage and Frequency control, Powerfactor correction, **Symmetrical components, Symmetrical and unsymmetrical fault analysis,**Principles of over-current, differential and distance protection; Circuit breakers, **System stability concepts, Equal area criterion.**

IES SYLLABUS:

Basic power generation concepts, steam, gas and water turbines, transmission line models and performance, cable performance, insulation, corona and radio interference, power factor correction, **symmetrical components**, **fault analysis**,principles of protection systems, basics of solid-state relays and digital protection; Circuit breakers, Radial and ring-main distribution systems,

SUGGESTED BOOKS:

TEXT BOOKS:

- 1. "Badri Ram, D. N Viswakarma", "Power System Protection and Switchgear", TMH Publications, 2011
- 2. "Sunil S Rao", "Switchgear and Protection", Khanna Publishers, 2008.

REFERENCE BOOKS:

- 1. "Paithankar and S. R. Bhide", "Fundamentals of Power System Protection", PHI, 2003.
- 2. "C R Mason", Art & Science of Protective Relaying Wiley Eastern Ltd, 1966.
- 3. "C. L. Wadhwa", "Electrical Power Systems", New Age international (P) Limited, Publishers, 6th Edition 2007.

VII. COURSE PLAN (WEEK-WISE):

(WEEK-	Week	Unit		Topics	Course Learning Outcomes	Reference							
UNI	UNIT I–Circuit Breakers												
1				Necessity of switchgear protection in power system	Know about overall subject	T1, T2 R2							
2		1 1	1 1	1	1	1	1	1 1	1 1	1	UNIT - I Introduction to Circuit Breakers:	Gain the knowledge and understand about Circuit	T2, R1
3	3			Circuit Breakers: Elementary principles of arc interruption	Breaker	12, K1							

4				Recovery, Restriking Voltage		
5				Recovery voltages&Restriking	Demonstrate and Acquire	
3		2		Phenomenon,	the knowledgeabout	T2, R2
6		2		Average and Maximum RRRV	Restriking phenomenon.	
7				Numerical Problems	Gain the knowledge about	T1 T2
8				Numerical Problems	RRRV	T1, T2
9				Tutorial / Bridge Class # 1	To clarify the doub	ts
10				Current Chopping and Resistance Switching	Understanding the	
11				CB ratings and Specifications: Types	knowledge of Circuit Breaker rating and	T2, R1
12		3		Numerical Problems	specification.	
13				Autore-closures	CB rating and specification	T2, R1
14				Description and Operation of following types of circuit breakers: Minimum Oil Circuit breakers	Understanding the knowledge of Circuit Breaker types.	T2, R1
15				Air Blast Circuit Breakers	Understanding the	
16				Vacuum circuit breakers.	knowledge of Circuit	T2, R1
17				SF6 circuit breakers.	Breaker types.	
18		4		Revision and Problems on Unit I	Overview	
					To Test the knowledge	and
19					preparing students for	final
				Mock Test – I	examination	
UNI	T – I	I Ele	ectro	omagnetic and Static Relays		
20	4		P	rinciple of Operation and onstruction of Attracted armature	Understanding the concept of Relays and its components	T1, T2, R2
21		2		rinciple of Operation and onstruction of Balanced Beam	Understanding the concept of Relays and its components	T1, T2, R2
22	5		Principle of Operation and Construction of Induction Disc Principle of Operation and Construction of Induction Cup relay		Understanding the concept of Relays and its components	T1, T2, R2
23					Understanding the concept of Relays and its	T1, T2, R2

				components			
24			Types of Over Current Relays: Instantaneous	Understanding the	T1, T2,		
25			DMT and IDMT types Over Current Relays	concept of Relays and its components	R2		
26			Types of Over Current Relays: Instantaneous DMT and IDMT types Over Current Relays	Understanding the concept of Relays and its components	T1, T2, R2		
27	6		Application of relays	Understanding the Knowledge of Relays and its components	T1, T2, R2		
28			Universal torque equation Distance relays: Impedance, Reactance	To Gain the knowledge about Torque equation.	T1, T2, R2		
29			Mho and Off-Set Mho relays	Understanding the concept of Relays and its types	T1, T2, R2		
30			Universal torque equation Distance relays: Impedance, Reactance	To Gain the knowledge about Torque equation.	T1, T2, R1,R2,		
31			Mho and Off-Set Mho relays	Understanding the concept of Relays and its types	T1, T2, R2		
32	7		Characteristics of Distance Relays and Comparison	To Gain the knowledge about characteristics and comparison.	T1, T2, R2		
33	,	2	Static Relays: Static Relays verses Electromagnetic Relays.	Understanding the knowledge about characteristics of static relays.	T1, T2, R2		
34			Revision and Problems on Unit II	Overview			
35			Mock Test – II	To Test the knowledge and preparing students for final examination			
UNI	T-III l	Protec	ction of Power System Equipment				
36	8	3	Protection of generators against Stator faults, Rotor faults, and	To Understand the concept of fault in	T1, T2, R2		

			Abnormal Conditions	Generator.	
37				To Gain the knowledge about earth fault	T1, T2,
			Restricted Earth fault Protection	protection.	
				To Understand and Gain	T1, T2,
38				the knowledge about inter-	R2
			Inter-turn fault Protection	turn fault and protection.	
				To Understand and Gain	
39				the knowledge about Fast	T1, T2,
			Numerical Problems on % Winding	decoupled load flow	R2
			Unprotected	method	
40				Applying the concepts to	T1, T2
			Numerical Problems	solve the problems	
			Protection of transformers:	To Know the concept of	T1, T2,
41			Percentage Differential Protection	Protection of transformers	R2
				To Apply and Gain the	T1, T2,
			Numerical Problem on Design of CT	Knowledge by solving	R2, R3
42			s Ratio	different problems	112, 113
			Buchholtz relay Protection	Understanding the	T1, T2,
43			Protection of Lines: Over Current	knowledge of relay	R2
44	9		Carrier Current relays	protection	112
45			Three-zone distance relay protection	Understanding the	
43		3	using Impedance relays	knowledge of relay	T1, T2,
46			Protection of Bus bars – Differential	protection.	R2
+0			protection.	protection.	
47			Revision and Problems on Unit II	Overview	
UNI	T IV -	-Neut	ral Grounding		
				Understanding the	
40				knowledge of	T1, T2
48			Ungrounded Neutral Systems	Undergrounded Neutral	R2
				system	
	10	4		To Understand and Gain	
10				the Knowledge about	T1, T2
49			Effects of Ungrounded Neutral on	Undergrounded Neutral	R2
			system performance	system	
50			Methods of Neutral Grounding	To Understand the	T1, T2
L				i .	

				concept of methods etc.	R2				
				To Test the knowledge	and				
51				preparing students for	final				
			Tutorial / Bridge Class # 2	examination					
				Understanding the	T1, T2				
52				knowledge of Solid	R2				
			Solid Grounding	grounded	K2				
				To Gain the Knowledge	T1, T2				
53				about Resistance	R2				
			Resistance Grounding	grounding.	KΖ				
				Understand the	T1, T2				
54	11			Knowledge of Arc	R2				
	11		Reactance - Arcing Grounds	grounding.	IX2				
				To Understand and Gain	T1, T2				
55				the knowledge of	R1,R2				
			Grounding Practices.	grounding Practices.	K1,K2				
56			Revision and Problems on Unit IV	Overview					
				To Test the knowledge	and				
57				preparing students for final					
				examination					
			Mock Test – III						
UNI	T V –	Prote	ction against Over Voltage						
58			Generation of Over Voltages in	To Know about generation	T1,T2,				
38			Power Systems	of Over Voltages.	R2				
				To Understand the					
59	12			concept	T1,T2,				
39	12		Protection against Lightning Over	of Protection against	R2				
			Voltages	Lightning					
				Understand the	T1,T2,				
60				knowledge of Lighting	R2				
		5 Valve type Lighting Arresters		5 Valve type Lighting Arresters		5 Valve type Lighting Arresters		Arresters.	K2
				Understand the	T1,T2,				
61				knowledge of Lighting	R2				
01	1		Zinc-Oxide Lighting Arresters	Arresters.	IX2				
	13			To Test the knowledge					
62	13			preparing students for	final				
			Tutorial / Bridge Class # 3	examination					
63				Understand the concept	T1,T2,				
			Insulation Co-ordination	of Insulation Co-	R2				

			ordination .		
64			To Understand the	T1,T2,	
04		BIL, Impulse Ratio	concept of Impulse Ratio.	R2	
65			To Understand and Gain	T1, T2,	
0.5			the knowledge of Standard	R2	
		Standard Impulse Test Wave	Impulse Test Wave	K2	
			To Understand and Gain	T1, T2,	
66	66 14		the knowledge of Volt-	R2	
		Volt-Time Characteristics	Time Characteristics.	K2	
			To Test the knowledge	and	
67			preparing students for	final	
07			examination		
		Mock Test – IV			
68		Revision	Overview		
Ex	tra	Tutorial / Bridge Class # 4	To clarify the doub	ts	
Cla	sses	Unit I – Unit V: Revision	Overview		

Contents Beyond the Syllabus: Protection Circuit in Power Electronics Components

II Mid Examinations (Week 15)

	Program Outcomes												Program Specific Outcomes	
	P01	P02	P03	P04	PO5	90d	PO7	P08	P09	PO10	PO11	P012	PSO1	PSO2
CO 1	3	2	1	1	-	-	-	-	-	-	-	1	1	1
CO 2	3	3	2	2	-	1	1	-	-	-	-	2	2	2
CO 3	3	3	2	2	-	2	2	-	-	-	-	2	3	2
CO	3	3	2	2	-	2	2	-	-	-	-	2	3	2

4														
CO 5	3	3	2	2	-	2	2	-	-	-	-	2	3	3
AV G	3	2.8	1.8	1.6	-	1.4	1.4	-	-	-	-	1.8	2.4	2

VIII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OFPROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES: IX. QUESTION BANK:

UNIT I

S.No	Question	Blooms	Course
3.140	Question	Taxonomy Level	Outcome
1	Brief discuss the different methods of arc interruption in case of circuit breakers?	Knowledge	2
2	In a short circuit test on 220 kV, 3-phase system with breaker gave the results as: P.f of the fault is 0.6 and recovery voltage is 0.85 times the full line voltage. The breaking current is symmetrical and restriking transient has a natural frequency of 10kHZ. Calculate the RRR V for i) Grounded fault and ii) Ungrounded fault	Derive	3
3	What is meant by circuit breaker? Discuss the phenomenon of arc formation in a CB.	Knowledge	2
4	Explain the concepts of recovery voltage and restriking voltages?	Knowledge	2
5	Discuss the air blast circuit breakers' ratings and its advantages	Knowledge	2
6	Explain the types of SF6 circuit breakers with neat diagrams?	Knowledge	2

7	List out the merits and limitations of air blast circuit breaker?	Knowledge	2
8	Explain the properties of SF6 gas and how it is used for circuit breakers?	Knowledge	2
9	Explain the concept of resistance switching of a circuit breaker with an equivalent circuit?	Applying	2
10	In a short circuit test on a CB, the following readings were obtained on single frequency transient. i) Time to reach the peak restriking voltage is 50µ sec. ii) The peak restriking voltage is 100kV. Find the average RRRV and iii) Frequency of oscillations	Derive	4
11	Describe the principle of operation of air blast circuit breakers?	Knowledge	2
12	Compare the operation of vacuum circuit breaker with SF6 circuit breaker?	Knowledge	2

UNIT II

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	What is an impedance relay? Discuss its principle of operation. Show its characteristics R-X diagram. List out its merits for transmission line protection.	Derive	4
2	Explain the hinged armature type	Knowledge	2

	relay with neat sketch?		
3	Explain about the principle of operation of biased differential relay with necessary equations?	Applying	3
4	Explain about MHO relay and OFF SET MHO relays with their characteristics?	Applying	3
5	Discuss the operating principle of an impedance relay and the draw its Characteristics on R-X plane?	Knowledge	2
6	Explain functions of induction disc relay with neat diagram?	Knowledge	2
7	Explain the operation of induction cup relay with neat diagram?	Knowledge	2
8	What are the various types of over current relay? Discuss the IDMT relays characteristics	Knowledge	2

UNIT III

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Explain the restricted earth fault protection by differential system in the protection of an alternator winding?	Understanding	2
2	A 11 kV, 100 MVA alternator is grounded through a resistance of 10 ohms. The current transformers have a ratio of 1000/5. The relay is set to operate when there is an out of balance current of 0.5 A. Find the percentage of generator winding protected by percentage differential protection?	Solving	3

3	Discuss the various faults occurred in the transformer and write the protection scheme for each fault?	Knowledge	3
4	Explain the protection device for a transformer that gives protection from internal Faults.	Applying	3
5	A 3 phase, 11/33KV star delta connected power transformer is protected by differential protection. The CTs on the LV side have a current ratio of 300/5. What must be the ratio of CTs on the HV side? Draw the connection diagram?	Applying, Solving	5
6	Explain how the rotor of an alternator will be protected by field ground fault protection?	Knowledge	3
7	Describe the stator protection of alternator by percentage differential protection with neat sketch?	Knowledge	3
8	plain how the transformer is protected from overheating problem?	Knowledge	3
9	Explain how the transformer is protected from overheating problem?	Knowledge	3
10	A 3φ, transformer having line voltage ratio 0.4/11 kV is connected in star delta and protective transformer on the 400 V side have a CT ratio of 500/5. What must be the ratio of the protective transformers on the 11kV side?	Applying, Solving	4
11	Explain transverse percentage differential protection for multi winding generators	Knowledge	3

12	A Star connected 3-φ, 25MVA, 11kV generator has a per phase reactance of 12%. It is protected by merz-price circulating current principle which is set to operate for fault current not less than 170 A. Find the value of earth resistance to be provided in order to ensure that only 12% of the generator winding remains	Applying, Solving	5
13	Explain the protection against magnetizing inrush current of a transformer?	Knowledge	3
14	Draw and explain the connection of current transformer secondaries for differential protection of star delta connected power transformer?	Knowledge	3

UNIT IV

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Explain the differences between grounded and un grounded neutral systems?	Solving	4
2	Explaineffects of Ungrounded Neutral on system performance?	Solving	4
3	What are the different methods of Neutral Grounding?	Solving	4
4	Explain Solid Grounding method? Write its merits and demerits?	Applying	4
5	Explain Resistance Groundingmethod? Write its merits and demerits?	Applying	4
6	Explain Reactance - Arcing Groundsmethod? Write its merits and demerits?	Solving	4
7	What are the different Grounding		

Practices?	

UNIT V

S.No	Question	Blooms Taxonomy Level	Course Outcome
1	Explain about the valve type and zinc oxide type lightning arresters?	Applying	3
2	Why is insulation coordination needed in a large power system? What is meant by basic impulse level of equipment?	Solving	3
3	Explain the resistance grounding with circuit diagram and phasor diagrams? List out its merits and demerits.	Solving	3
4	plain the concept of arcing grounds in the power system and derive the necessary expressions.	Derive	4
5	Draw the volt time characteristics of impulse test wave and mark the flash over voltages?	Applying	3
6	Explain how the over voltages are generated in the power system?	Applying	3
7	nat are the methods that are used to give protection against over voltages in the power system?	Applying	3